Code: CS3T1

II B.Tech - I Semester-Regular/Supplementary Examinations November 2016

DISCRETE MATHEMATICS (COMPUTER SCIENCE AND ENGINEERING)

Duration: 3 hours
Max. Marks: 70
PART - A
Answer all the questions. All questions carry equal marks $11 \times 2=22 \mathrm{M}$
1.
a) Define Well formed Formulae with an Example.
b) Find Duality for $A:(P \rightarrow R) \wedge(Q \rightarrow S)$.
c) Construct the CNF of $\mathrm{P} \wedge(\mathrm{P} \rightarrow \mathrm{Q})$.
d) What is meant by Axiom Schema?
e) Draw the Hasse Diagram for the Given Relation

$$
\mathrm{R}=\{(1,1),(2,2),(3,3),(1,4),(3,1),(3,2),(3,4)\} .
$$

f) Define Lattice. What are its types?
g) Define homomorphism with an Example.
h) Differentiate Bi-partite and Complete Bi-partite graphs.
i) What is Edge-Disjoint and Vertex-Disjoint sub graphs?
j) Draw a binary tree whose level order indices are $\{1,2,4,5,8,10,11,20\}$
k) Write the rules for constructing Hamilton Paths and Cycles.

PART - B

Answer any THREE questions. All questions carry equal marks.

$$
3 \times 16=48 \mathrm{M}
$$

2.

a) Prove that $\neg \mathrm{P} \leftrightarrow \mathrm{Q} \Leftrightarrow(\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \wedge \mathrm{Q})$.

8 M
b) Obtain the PCNF of the formula A given by $(\neg \mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \leftrightarrow \mathrm{P})$ and hence find PDNF of A ? 8 M
3.
a) Describe in detail about Automatic Theorem Proving.
b) Apply Automatic Theorem Proving to show that S V R is tautologically Implied by $(\mathrm{P} \vee \mathrm{Q}) \wedge(\mathrm{P} \rightarrow \mathrm{R}) \wedge(\mathrm{Q} \rightarrow \mathrm{S})$.

8 M
4.
a) Draw the Hasse diagram representing the positive integers of 24. Find Minimal, Maximal, Greatest and Least elements.
b) If $\mathrm{A}=\{1,2,3,5,30\}$ and R is the divisibility relation, prove that (A, R) is a lattice. Check whether this is a distributive lattice or not.

8 M
5.
a) Illustrate isomorphism of graphs with an example. 8 M
b) Demonstrate Depth first Search Algorithm with an Example.
6.
a) Show that a graph of
ii) Order 6 and size 12 are Planar.
b) Prove that a graph of Order n consisting of a single cycle is 2-chromatic if n is Even and 3-chromatic if n is Odd.

